

Technisches Datenblatt

FRÖTEK Level Indicator FLI mit elektronischer Signalausgabe

FRÖTEK-Kunststofftechnik GmbH An der Unteren Söse 24-30 37520 Osterode am Harz Germany

Version 2.0, mit Stand 15. September 2017

Kurzbeschreibung

Der FRÖTEK Level Indicator ist ein Produkt, welches dazu bestimmt ist, den Akkumulatorenelektrolytstand von Blei-Säure-Akkumulatoren im Betrieb zu indizieren. Grundsätzlich besteht dieser aus einem Gehäuse mit elektronischer Meldevorrichtung, an dem ein langer, außen isolierter Bleistab derart angebracht ist, dass dieser durch einen Batteriedeckel gesteckt den Elektrolyt berührt. Des Weiteren sind am Gehäuse zwei Kabel zur Spannungsversorgung und eins zur Signalübermittlung angeschlossen. Abbildung 1 zeigt ein Modell eines exemplarischen Geräts.

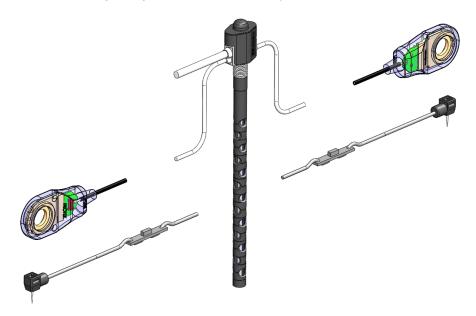


Abb. 1: Beispielbild: Ansicht der elektronischen Version des FLI

Gültigkeit

Dieses Datenblatt gilt für alle FLI mit elektronische Signalausgabe gemäß Tabelle¹² 1

Bezeichnung	Abkürzung	Artikel-Nr.	Funktion	Anzahl Leitungen	VPE
Advanced FRÖTEK Level Indicator mit Flexabgriff und frequenzmodulierter Signalausgabe	Ad-FLI Flex COM	40340104	High/Low	2+1	10
Advanced FRÖTEK Level Indicator mit Flexabgriff und frequenzmodulierter Signalausgabe, Polschraube, Distanzhülse	Ad-FLI Flex COM Set	40340105	High/Low	2+1	10

Tab. 1: Gültigkeitsliste

Zweckgemäße Verwendung und Installation

Der FLI und seine Ausführungen gemäß Tabelle 1 ist für den Einsatz auf Flüssigelektrolyt-Blei-Säure-Akkumulatoren bestimmt. Er dient der Indikation des Elektrolytfüllstands in der Zelle. Dazu wird in die zu überwachende Zelle, fortan Pilotzelle genannt, eine $d=8\,\mathrm{mm}$ Öffnung verbracht, in die der FLI mit zuvor wunschgemäß gekürzter Elektrode gesteckt wird. Der Spannungsabgriff mit Länge $I_{\mathrm{neg}}\approx 600\,\mathrm{mm}$ muss an einen Batterieverbinder mit $U=6-14\,\mathrm{V}$ negativerem Potential als der negative Pol der Pilotzelle angeschlossen werden. Der zweite Spannungsabgriff mit kürzerem Kabel $I_{\mathrm{pos}}\approx 200\,\mathrm{mm}$ muss an den negativen³ Pol der Pilotzelle angeschlossen werden.

Funktionen und Eigenschaften

Signalübermittlung: Der Elektrolytfüllstand der Pilotzelle wird in Form eines elektronischen Signals ausgegeben. Dazu wird ein Optokoppler angesteuert, dessen Ausgänge mittels zweier Signaladern aus dem Betriebsmittel geführt werden. Bei diesen Leitern handelt es sich um zwei Einzeladerleitungen des Signalkabels des Typs $3 \cdot 0.25 \, \text{mm}^2$. Zur Belegung:

- · Rote Ader: Signalausgang1, Optokoppler Kollektor
- Schwarze Ader: Signalausgang2, Optokoppler Emitter
- · Grüne Ader: Unbelegt

Abbildung 2 zeigt eine exemplarische Schaltung, mit der das Signal des FLI gemessen werden kann. Die Signale bestehen stets aus aufeinanderfolgenden Signalen High/True/Durchgang und Low/False/Widerstand.

Grundfunktionen des FLI Hat der FLI gesicherten Kontakt zum Elektrolyten, so gibt der frequenzmodulierte Ad-FLI COM ein permanentes High-Signal aus. Hat der FLI keinen Kontakt, so gibt der Ad-FLI COM ein Signal mit symmetrischem Taktverhältnis aus, welches in Abhängigkeit von der Dauer des Wassermangelzustands täglich schneller wird. Die Frequenz beträgt am ersten Tag 0,5Hz, und steigt binnen 5 Tagen auf rund 4Hz. Näheres ist untenstehend beschrieben.

¹Varianten mit Pin-Abgriff sind, wie im Titelbild angedeutet, lieferbar, aber hier nicht gelistet.

²zusätzlich gültig für die Sondervarianten Typ 40430106 und 40430107

³Der positive Pol des FLI muss das gleiche Potential wie die negative Elektrode der Pilotzelle aufweisen. So wird eine Korrosion des Prüfstabes verhindert.

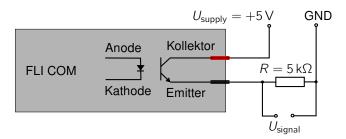


Abb. 2: Belegungsskizze des Ad-FLI COM, Beispielschaltung

Füllstandsverifikation: Zwei Mal pro Sekunde führt der FLI eine Füllstandsüberprüfung durch. Dazu versucht das Gerät für eine Zeit von rund $t=380~\mu s$ einen Prüfstrom von $I\approx25~mA$ fließen zu lassen. Ist dies möglich, gilt der Kontakt zum Elektrolyt als gesichert; das entsprechende Signal wird ausgegeben. Mit diesem Programmschritt wird vermieden, dass Kriechströme zu Fehlindikationen führen. Sollte ein Kontakt nur über Kriechströme vorliegen, wird dennoch das Signal für einen zu niedrigen Elektrolytstand ausgegeben.

Schwapphysteresefunktion: Um ein allzu häufigen Wechsel zwischen den ausgegebenen Signalen des Ad-FLI zu vermeiden, wird das Umschaltverhalten durch eine asymmetrische Umschaltverzögerung gedämpft:

- Füllstand i.O. Signal wird ausgegeben, Kontakt zum Elektrolyt reißt ab. Umschalten auf das n.i.O-Signal nach 25-40 Sekunden
- Füllstand n.i.O Signal wird ausgegeben. Kontakt zum Elektrolyt tritt ein. Umschalten auf i.O-Signal nach 8-12 Sekunden

Wassermangeldaueranzeiger Mit zunehmender Dauer des ununterbrochenem Zustands ohne Kontakt zum Elektrolyten wird dieser Umstand durch eine Veränderung des Signals angezeigt. Näheres in der Beschreibung der Signale.

Signalbeschreibung des frequenzmodulierten Ad-FLI COM

Hat die Bleielektrode des Ad-FLI COM einen *gesicherten* Kontakt zum Zellelektrolyten, so erfolgt eine Ansteuerung eines Optokopplers mit einem permanenten *High*-Signal. Hat die Bleielektrode des Ad-FLI COM keinen *gesicherten* Kontakt zum Zellelektrolyten, so erfolgt eine Ansteuerung eines Optokopplers mit einer Signalfrequenz von $f\approx 0.55\,\mathrm{Hz}$ und einem quasisymmetrischen Tastverhältnis (Pulsweite) von $\frac{t_{highlevel}}{t_{lowlevel}}\approx 0.55\pm 0.05$. Der Ad-FLI COM verfügt über einen elektronischen Fehlerzeitanzeiger analog zu Tabelle 2. Entsprechend den angegebenen Frequenzen wird die Dauer des Fehlers als frequenzmoduliertes, quasisymmetrisches Signal übertragen. Abbildung 3 verdeutlicht die Grundfunktionen des Geräts.

Zeit des dauerhaften Elektrolytmangelzustands		Pulsfrequenz	
	0-1 Tage	Pulst mit $f \approx 0.55 \mathrm{Hz}$	
	1-2 Tage	Pulst mit $f \approx 1,1\mathrm{Hz}$	
	2-3 Tage	Pulst mit $f \approx 2.3 \mathrm{Hz}$	
	3-4 Tage	Pulst mit $f \approx 3.7 \mathrm{Hz}$	
	4-5 Tage	Pulst mit $f \approx 4.8 \mathrm{Hz}$	
	Ab 5 Tagen	Pulst mit $f \approx 50 \mathrm{Hz}$	

Tab. 2: Fehlerzeitanzeigfunktion des Ad-FLI COM

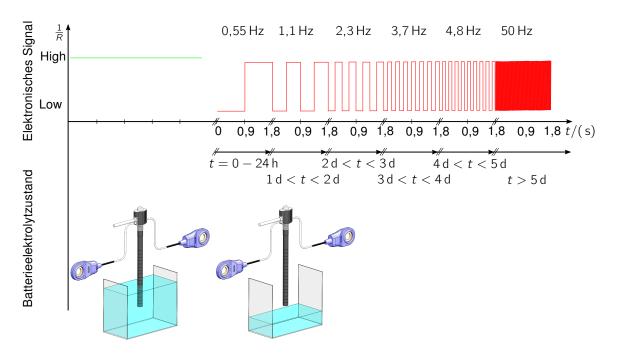


Abb. 3: Frequenzmodulation in Abhängigkeit vom Elektrolytfüllstand. Das im Graph gezeigte Signal ist beispielsweise über eine Schaltung gemäß Abbildung 2 generierbar

Technische Daten

Beschreibung	Description	Bezug	Wert und Einheit	
		Reference	Value and Unit	
Elektrische Eigenschaften/Electrica	al Properties			
Bemessungsspannung	Assessment Voltage	U	12 V	
Betriebsspannung	Operating Voltage	U	$6-14\mathrm{V}$	
Absicherungsstrom	Fuse Current	$I_{\sf Fuse}$	125 mA	
Bemessungsstrom	Assessment Current	1	30 mA	
Durchschnittsstrom	Average Operating Current	I_{avg}	15 mA	
Elektrolytmessstrom	Electrolyte Probe Current	I_{max}	25 mA	
Verpolschutzgrenze	Inverse Polarity Protection Limit	$U_{rev,max}$	$-160\mathrm{V}$	
Grenzwiderstand Füllstands- messung	Limit Resistance Level Detection	R_{i}	400Ω	
Bemessungsspannung aller Leitungen	Cable Assessment Voltage	U_{cable}	250 V	
Prüfspannung aller Leitungen	Cable Test Voltage	$U_{\sf spark}$	1,5 kV	
EMV-Konformität gemäß	EMC-test passed according to	EN61326-1	Ja/Yes	
Max. Kollektor-Emmitter Span- nung	Max. Collector-Emitter Voltage	U_{CEO}	80 V	
Max. Emmitter-Kollektor Span- nung	Max. Emmitter-Collektor Voltage	U_{ECO}	6 V	
Maximaler Kollektorstrom	Maximum Collector Current	$I_{C,max}$	50 mA	
Typischer Kollektorstrom	Typical Collector Current	I _C	5 mA	
Mechanische und maßliche Eige	enschaften/Mechanical and Dimensional Pr	roperties		
Betriebstemperatur	Operation Temperature Range	$T_{\rm min}/T_{\rm max}$	-20/85°C	
Spannungsversorgungslei- tungs-aufbau	Power Supply Cable Design	STL-Li12Y	$1\cdot 0,75\text{mm}^2$	
Signalleitungsaufbau	Signal Cable Design	STL-Li9Y12Y	$3 \cdot 0,25 \text{mm}^2$	
Länge des Elektrolytstabes bei Auslieferung	Length of Electrolyte Probe ex Works	1	140 mm	
Verbleibende Mindestlänge des Elektrolytstabes nach Zuschnitt	Minimum remaining Electrode Length after Cut-Off	I	30 mm	
Durchmesser Bohrloch Zellde- ckel	Assembly Hole Diameter	d	8 mm	
Durchmesser Bleielektrode	Lead Electrode Diameter	d_{Pb}	3 mm	
Länge der Spannungsabgriffs- leitung	Voltage Tap Cable Length	I_{neg}	600 mm	
Länge der zweiten Spannungs- abgriffsleitung	Second Voltage Tap Cable Length	I_{pos}	200 mm	
Länge der Signalleitung	Signal Cable Length	$I_{ m remote}$	2000 mm	

Anmerkung: Die in diesem Dokument zur Verfügung gestellten Informationen entsprechen unseren Kenntnisstand am Tag der Veröffentlichung. Im Falle neuer Erkenntnisse und Erfahrungen können sich die vorliegenden Informationen ändern. Sie eignen sich nicht für Spezifikationen und entbinden nicht der Prüfung der Ware für Ihre Zwecke und Verwendung. Somit übernimmt die FRÖTEK - Kunststofftechnik GmbH keine Gewähr und keine Haftung in Verbindung mit der Nutzung dieser Information.

Funktionale Eigenschaften/Function Signalbeschreibung siehe oben	onal Properties Signal specification see above		Schwarz/Black		
	onal Properties		SCHWarz/Black		
			SCHWarz/Black		
Ader Emitter	Emitter Wire		0,25 mm ² ,		
Ader Kollektor	Collector Wire		0,25 mm ² , Rot/Red		
Ader- und/oder Steckerbelegung/Cable and Connector Assignment					
Schutzklasse bei Verbau mit Kabelschuh-Abgriff	IP Code if using the ring lug (Screw) tap	EN60529 VDE0470 T. 1	IP00 ⁴		
Schutzklasse bei Verbau mit PIN-Einstechabgriff	IP Code if using the Pin- tap	EN60529 VDE0470 T. 1	IP65		
Schutzklasse bei Verbau mit Polschraube mit Prüfloch	IP Code if using a terminal bolt with inspection hole	EN60529 VDE0470 T. 1	IP36B		
Schutzklasse bei Verbau mit Polschraube ohne Prüfloch	IP Code if using a terminal bolt without inspection hole	EN60529 VDE0470 T. 1	IP66		

Hinweise und Bemerkungen

- Nach einem Spannungsausfall bzw. nach Neuinstallation des Ad-FLI gibt dieser auch ohne Kontakt zum Elektrolyt zunächst ein i.O-Signal aus.
- Das Kürzen der Elektrode kann spanfrei erfolgen: Abknipsen oder Schneiden der Elektrode ist möglich. Alternativ kann gesägt werden.
- Der FLI dichtet mit mehreren Dichtlamellen im Zelldeckelloch ab. Ein strammer und fester Sitz des Geräts verhindert das Austreten von Säure. Wird der FLI entfernt, ist nach einer Wiedermontage keine Abdichtung mehr gewährleistet.
- Weitere Hinweise zum Einbau liefert die Einbauanweisung.

FRÖTEK Kunststofftechnik GmbH, 15. September 2017

⁴Das Gehäuse des FLI selbst genügt IP66 / The Housing of the FLI accords to IP66

EG-Konformitätserklärung

im Sinne der EG-Richtlinie

Elektromagnetische Verträglichkeit 2004/108/EG

Name und Anschrift des Herstellers:

FRÖTEK-Kunststofftechnik GmbH An der Unteren Söse 24-30 37520 Osterode am Harz

Hiermit erklären wir, dass das nachstehend bezeichnete Betriebsmittel in seiner Konzipierung und Bauart sowie in der von uns in Verkehr gebrachten Ausführung den Bestimmungen der genannten EG-Richtlinien entspricht. Bei einer mit uns nicht abgestimmten Änderung des Betriebsmittels verliert diese Erklärung ihre Gültigkeit.

Betriebsmittel:

Produktbezeichnung: FRÖTEK Level Indicator

Typen: FLI Flex, FLI Pin, FLI Screw, Ad-FLI Flex, Ad-FLI Pin, Ad-FLI Screw, Ad-FLI

Extern, Ad-FLI COM

Folgende harmonisierte Normen wurden angewendet:

DIN EN 61326-1:2006, Elektrische Mess-, Steuer-, Regel- und Laborgeräte -**EMV-Anforderungen**

Eine Technische Dokumentation ist vollständig vorhanden.

Die zum Betriebsmittel gehörende Betriebsanleitung in deutsch und englisch liegt

vor.

Osterode a.H., 30.09.2013

Ort, Datum

Brothuhn, Sascha; Prokurist

Name, Vorname; Funktion

des Unterzeichners

Unterschrift

Anmerkung: Die in diesem Dokument zur Verfügung gestellten Informationen entsprechen unseren Kenntnisstand am Tag der Veröffentlichung. Im Falle neuer Erkenntnisse und Erfahrungen können sich die vorliegenden Informationen ändern. Sie eignen sich nicht für Spezifikationen und entbinden nicht der Prüfung der Ware für Ihre Zwecke und Verwendung. Somit übernimmt die FRÖTEK -Kunststofftechnik GmbH keine Gewähr und keine Haftung in Verbindung mit der Nutzung dieser Information.